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Euclidean Position Estimation of Static Features using a

Moving Camera with Known Velocities

D. Braganza, D. M. Dawson and T. Hughes∗†

Abstract

The estimation of 3D Euclidean coordinates of features
from 2D images is a problem of significant interest. In
this paper we develop a 3D Euclidean position estima-
tion strategy for a static object using a single moving
camera whose motion is known. The Euclidean depth
estimator which is developed has a very simple mathe-
matical structure and is easy to implement. Numerical
simulations and preliminary experimental results using a
mobile robot in an indoor environment are presented to
illustrate the performance of the algorithm. An extension
of this estimation technique for a paracatadioptric system
is also presented.

1 Introduction

The use of a camera to estimate the 3D structure of an ob-
ject from 2D images is known as “Structure from Motion
(SFM)” [1, 2, 3], or “Simultaneous Localization and Map-
ping (SLAM)” (see [4, 5], and references therein). The
problem usually involves a camera mounted on a moving
platform, such as an unmanned aerial vehicle (UAV) or
a mobile robot, which is utilized to map the Euclidean
position of static landmarks or visual features in the en-
vironment. Recently, SLAM and SFM have been utilized
for a number of applications including aerial tracking and
surveillance of ground based, stationary or moving ob-
jects [6, 7, 8, 9], and terrain mapping systems [10, 11, 12].

Most of the previous results in this area are formu-
lated using linearization based techniques such as the ex-
tended Kalman filter [3, 4, 5]. It has been noted [13]
that the linearized motion models can cause significant
inconsistencies in solutions. There have been a few re-
sults [14, 15, 16], which utilized nonlinear system analy-
sis and estimation tools to design nonlinear observers for
the problem. In recent work, Chitrakaran et al. [17, 18]
proposed nonlinear estimation strategies to identify the
Euclidean structure of an object using a monocular cali-
brated moving camera. The camera motion in this work
was modeled based on the homography between two dif-
ferent views captured from the camera, the current frame
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and a DARPA Contract.
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and a constant reference frame. The algorithms reported
by Chitrakaran et al., require that at least one distance
between two features on the object be known for the re-
construction of the 3D Euclidean coordinates. Also, to
decompose the homography and obtain the rotation and
translation of the camera between the two camera views,
the normal vector to the object must be known [18] and
in the case of [17], the rotation between the object frame
and the camera at the reference position must also be
known.

In this work, our objective is to estimate the 3D Eu-
clidean structure of a static object using a single camera
mounted on a moving platform whose translation and ro-
tation velocities are measurable. Although the work in
[17, 18], was fundamentally more challenging, since the
camera velocity was unknown, it did make some assump-
tions on the structure of the object which it was to iden-
tify. There are applications such as video surveillance
and mapping using a UAV or a mobile robot where the
velocity of the camera mounted on the moving platform
is readily available. Thus, the goal of this work is to elim-
inate the requirements from the previous works [17, 18],
that the distance between two feature points be known,
and that the normal vector or rotation matrix be known
a priori. The development in this work is similar to the
concepts introduced in [19, 20], where range observer’s
were developed for feature points on an object undergoing
affine motion with known motion parameters. However,
the development in our work is based on the kinematics
of the moving camera and has a simpler mathematical
formulation.

To design the estimator, the equations for motion kine-
matics are first developed in terms of Euclidean and
image-space information based on a single camera view
[21]. Then, a nonlinear integral observer [22], is uti-
lized to estimate the velocity of each feature point in the
image plane. Once the estimate of the image velocity
is known a simple estimator can be developed for the
depth variable, and hence, the 3D structure can be esti-
mated. The developed estimator asymptotically identifies
the Euclidean depth subject to an observability condition.
This condition is similar to the observability condition of
[19, 20] and the persistency of excitation condition in [18].
The proposed estimator was implemented using a camera
mounted on a mobile robot and our preliminary exper-
imental results show that the estimator converges very
quickly and is not computationally complex, and hence,
can be used for real-time applications. As an extension
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of this work, we show how the proposed Euclidean es-
timation strategy can be applied to a paracatadioptric
system.

The remainder of this paper is organized as follows, in
Section 2, the geometric model which relates Euclidean
coordinates of visual features on the stationary object
with their corresponding image pixel coordinates is devel-
oped based on the perspective projection model. Section
3, describes the motion kinematics between the camera
and the object. Section 4, describes the velocity estima-
tor which is used to estimate the pixel coordinate veloc-
ity of the visual features, and in Section 5, the Euclidean
depth estimator is developed. Finally, numerical simula-
tion and preliminary experimental results using a mobile
robot in an indoor environment are presented in Section 6
and Section 7, respectively. In the appendix an extension
of this estimation strategy to a Paracatadioptric system
is presented.

2 Geometric Model

Figure 1 shows the geometric relationship between a mov-
ing perspective camera and features on a static object in
its field of view. The geometric model developed in this
section is based on a single view of the object from the
camera at a time varying position denoted by I. The
vector m̄i(t) ∈ R

3 denotes the 3D Euclidean position of
the ith feature point Oi relative to the camera frame I,
and is defined as

m̄i ,
[

xi yi zi

]T
. (1)

The image coordinates of the feature points as captured

Figure 1: Geometric relationship.

by the moving camera are the normalized Euclidean co-
ordinates of the feature points, denoted by mi(t) ∈ R

3

which is defined as

mi ,
1

zi

m̄i. (2)

The corresponding projective pixel coordinates of the fea-
ture points are denoted by pi(t) ∈ R

3 which is defined as
follows

pi =
[

ui vi 1
]T

. (3)

The image coordinates of the features and their normal-
ized Euclidean coordinates are related by the pin-hole
camera model [21] such that

pi = Ami (4)

where A ∈ R
3×3 is a known, constant, and invertible

intrinsic camera calibration matrix defined as follows [23]

A =





fku fkucot(φ) u0

0 fkv

sin(φ) v0

0 0 1



 (5)

where u0, v0 ∈ R denote the pixel coordinates of the prin-
cipal point (i.e., the image center that is defined as the
frame buffer coordinates of the intersection of the optical
axis with the image plane), ku, kv ∈ R represent camera
scaling factors, φ ∈ R is the angle between the camera
axes, and f ∈ R denotes the camera focal length.

3 Camera Kinematics

The kinematics of the camera frame I is developed in
terms of the image coordinates of the feature points. Af-
ter taking the time derivative of (4), the following kine-
matics can be obtained (see [24] for more details)

ṗi = −
1

zi

Aeiυc + Aei

[

A−1pi

]

×
ωc (6)

where υc, ωc ∈ R
3 denote the translational and rotational

velocities of the camera relative to the initial position
of the camera but expressed in the local frame I, and
Aei ∈ R

3×3 is a function of the intrinsic camera calibra-
tion matrix and the image coordinates of the ith feature
points image coordinates, defined as follows

Aei = A −





0 0 ui

0 0 vi

0 0 0



 , (7)

and [ζ]
×

denotes the following skew symmetric matrix

[ζ]
×

=





0 −ζ3 ζ2

ζ3 0 −ζ1

−ζ2 ζ1 0



 ∀ ζ =





ζ1

ζ2

ζ3



 . (8)

For the remainder of this development only the first two
elements of ṗi(t) defined in (6) are considered. Thus, the
2D kinematics for the camera can be written as

Ẋi = −
1

zi

Πiυc + Πi

[

A−1pi

]

×
ωc (9)

where Xi(t) ∈ R
2 is expressed as

Xi =
[

ui vi

]T
(10)
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and Πi ∈ R
2×3 consists of the first two rows of the matrix

Aei which was defined in (7), and can be explicitly written
as follows

Πi =

[

fku fkucot(φ) u0 − ui

0 fkv

sin(φ) v0 − vi

]

. (11)

4 Image Feature Velocity Estima-

tion

The only unknown in the camera kinematic equation (9),
is the Euclidean depth zi(t). To facilitate the develop-
ment of an estimator for the depth parameter, an esti-
mate of the image velocity signal Ẋi(t) is required. The
following continuous estimator [22] can be utilized to es-
timate the velocity

˙̂
Xi ,

∫ t

t0

[

(Ki + I2) X̃i(τ) + Γisgn(X̃i(τ))
]

dτ

+ (Ki + I2) X̃i(t) (12)

where
˙̂

Xi(t) ,
[

˙̂ui
˙̂vi

]T
∈ R

2 denotes the estimate

of the signal Ẋi(t), X̃i(t) ∈ R
2 is the estimation error

defined as follows

X̃i(t) , X(t) − X̂(t), (13)

Ki, Γi ∈ R
2×2 denote constant positive definite diagonal

gain matrices, and sgn(X̃i) denotes the signum function
applied to each element of the vector X̃i(t). For more
details on the development of the above estimator the
reader is referred to [22]. To summarize the result, it was
shown that the estimator in (12) asymptotically identifies

the signal Ẋi(t) (i.e.,
∥

∥

∥

˙̃
Xi(t)

∥

∥

∥
,
∥

∥

∥
X̃i(t)

∥

∥

∥
→ 0 as t → ∞),

provided that the jth diagonal element of the gain matrix
Γi and the jth element of the vectors Ẍi(t) and

...
Xi(t)

satisfies the following condition for all i feature points

[Γi]j ≥

∣

∣

∣

∣

[

Ẍi(t)
]

j

∣

∣

∣

∣

+
∣

∣

∣

[...
Xi(t)

]

j

∣

∣

∣
∀j = 1, 2. (14)

Thus the only restriction on the camera motion is a rela-
tively mild assumption of the smoothness and bounded-
ness of the higher order derivatives of the camera velocity.

5 Euclidean Depth Estimation

The objective is to design an estimator for the Euclidean
depth, zi(t). To this end, the kinematic equation (9), can
be rewritten in a simplified form as follows

Ẋi = −ρiλi + δi (15)

where λi =
[

λi1 λi2

]T
∈ R

2, δi =
[

δi1 δi2

]T
∈ R

2

are measurable signals which are defined as follows

λi = Πiυc (16)

δi = Πi

[

A−1pi

]

×
ωc (17)

and ρi(t) =
1

zi(t)
∈ R is the inverse of the Euclidean

depth which is unknown and will be estimated.

The individual components of the simplified expression
for the camera kinematics in (15), can be written as

˙̃
Xi1 +

˙̂
Xi1 = −ρiλi1 + δi1 (18)

˙̃
Xi2 +

˙̂
Xi2 = −ρiλi2 + δi2 (19)

where X̃i =
[

X̃i1 X̃i2

]T
, X̂i =

[

X̂i1 X̂i2

]T
, and

(13) was utilized. After multiplying (18) by λi1(t) and
(19) by λi2(t), and rearranging the resulting equations,
the following expressions can be obtained

ρiλ
2
i1 = λi1

(

δi1 −
˙̂

Xi1

)

− λi1
˙̃

Xi1 (20)

ρiλ
2
i2 = λi2

(

δi2 −
˙̂

Xi2

)

− λi2
˙̃

Xi2. (21)

After adding (20) and (21), the following expression is
obtained

ρi

(

λ2
i1 + λ2

i2

)

= λi1

(

δi1 −
˙̂

Xi1

)

+ λi2

(

δi2 −
˙̂

Xi2

)

−λi1
˙̃

Xi1 − λi2
˙̃

Xi2. (22)

Based on the expression in (22), an estimate for the in-
verse Euclidean depth can be designed as follows

ρ̂i ,
1

(λ2
i1 + λ2

i2)

[

λi1

(

δi1 −
˙̂

Xi1

)

+ λi2

(

δi2 −
˙̂

Xi2

)]

(23)

where ρ̂i(t) ∈ R represents the inverse depth estimate and
the inverse depth estimation error ρ̃i(t) , ρi(t)−ρ̂i(t) ∈ R

is explicitly defined as follows

ρ̃i =
−1

(λ2
i1 + λ2

i2)

[

λi1
˙̃

Xi1 + λi2
˙̃

Xi2

]

. (24)

Notice that, since the image feature velocity estima-
tor asymptotically converges to the true velocity (i.e.,
˙̃

Xi1(t),
˙̃

Xi2(t) → 0), the inverse depth estimation error
converges to zero, (i.e., ρ̃i(t) → 0). Thus, the inverse
depth estimate ρ̂i(t), converges to its true value provided

that,
˙̂

X(t) → Ẋ(t) and
(

λ2
i1(t) + λ2

i2(t)
)

6= 0. From (15),

it is evident that, if
(

λ2
i1(t) + λ2

i2(t)
)

= 0, then the in-
verse depth estimate ρi(t) is unobservable. Thus, we can
conclude that the inverse depth estimate can be asymp-
totically identified provided that λ2

i1(t) + λ2
i2(t) 6= 0 and

the gain condition in (14) is satisfied.

6 Simulation Results

A simulation study was conducted to evaluate the perfor-
mance of the proposed estimation algorithm. The sim-
ulations were performed using five static feature points
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whose Euclidean coordinates were selected as follows

O1 =
[

0 0.2 1
]T

O2 =
[

−0.1 0.2 1.25
]T

O3 =
[

0.1 0.2 1.5
]T

(25)

O4 =
[

−0.2 0.2 1.75
]T

O5 =
[

0.2 0.2 2
]T

.

The cameras translational and rotational velocities were
chosen as

υc =
[

0.2cos(t) 0.2sin(t) 0.1sin(t)
]T

m/s

ωc =
[

0 0 0.1sin(0.2πt)
]T

rad/s . (26)

In addition, a camera calibration matrix for a 640 × 480
camera was selected as follows





810 0 320
0 820 240
0 0 1



 . (27)

The estimator gains were chosen to give the best perfor-
mance both with and without additive noise and were
selected as follows

Ki = diag{20, 20}, Γi = diag{3, 3}. (28)

In the simulations four different cases were considered
using the above parameters. For case 1, the image points
had no noise added to them. In case 2, a small amount
of noise (variance 0.001) was added to the image points.
For case 3, noise with a variance of 0.0001 was added and
image points were passed through a low-pass filter. The
low pass filter had a cutoff frequency of 2 Hz. In the
final case, the image points were rounded to integers to
simulate the discrete output of the feature tracker, these
image points were then passed through the low pass filter.

The simulation results for each of the four cases is
shown in Table 1. Note that, feature points that are fur-
ther from the camera generally have a larger error. The
highest percent error was 4.3% for case 2 with the feature
point at a distance of 2 m from the camera. The depth
estimation error for the four cases considered in the sim-
ulations are shown in figures 2, 3, 4, 5. Figure 6 shows a
comparison of the depth estimation error using the cur-
rent algorithm and the algorithm from [18] for a single
feature point.

7 Experimental Results

In this section, preliminary experimental results using a
mobile robot are discussed. A standard off the shelf web-
cam (Logitech QuickCam) was used to capture images at
a resolution of 640 × 480 pixels. The calibration matrix
of the camera was found to be the following





726.6 0 333.3
0 760.8 226.2
0 0 1



 . (29)
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Figure 2: Simulation case 1: Depth estimation error with-
out additive noise.
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Figure 3: Simulation case 2: Depth estimation error with
noise of variance 0.001.
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Figure 4: Simulation case 3: Depth estimation error with
noise of variance 0.0001 and filtering.

4



0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

E
s
ti
m

a
ti
o

n
 e

rr
o

r 
(m

−
1
)

Figure 5: Simulation case 4: Depth estimation error with
integer rounding.
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Figure 6: Simulation comparison of the depth estimation
error for a single feature point.

Table 1: Simulation errors in depth estimation for each
case

Feature
point

Depth
(m)

Error
Case
1
(cm)

Error
Case
2
(cm)

Error
Case
3
(cm)

Error
Case
4
(cm)

O1 1.0 1.6 3.0 1.5 1.5

O2 1.25 2.0 4.1 2.4 2.5

O3 1.50 2.2 5.3 2.2 2.6

O4 1.75 2.7 6.9 3.9 4.6

O5 2.0 3.0 8.5 3.7 4.9

The camera was mounted on an ActivMedia Robotics Pi-
oneer 3 mobile robot as shown in Figure 7. The mobile
robot’s on-board controller provides translational and ro-
tational velocity information using wheel mounted optical

encoders. The test scene consisted of a doll house. Both
the mobile robot and the camera were connected to a lap-
top with an Intel Centrino Duo 2 GHz processor and 1
GB of memory. The laptop was used to set the velocity of
the robot, capture images of the scene, and log the video
and velocity data for off-line processing. For the prelimi-
nary tests, the robot was given a translational velocity of
5 cm/s along the X-axis and no rotational velocity. The
average frame rate obtained using the webcam was 14.2
frames per second.

Figure 7: Experimental test setup with camera, mobile
robot, and doll-house scene.

Using the implementation of the Lucas-Kanade feature
tracking algorithm provided in the OpenCV computer
vision library [25], a computer program was written in
C++ which enabled the user to select features manually
and track those features for the entire image sequence.
The program created a text file which contained the fea-
ture point pixel coordinates and camera velocity for each
frame. In the experiment, 12 features were selected. A
sample frame with the tracked feature points is shown in
Figure 8.

Figure 8: A frame from the doll-house image sequence
showing the tracked feature points.
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The depth estimation was calculated off-line using
Mathworks Simulink program. A low-pass filter with a
cutoff frequency of 1 Hz was applied to the feature points
and camera velocities from the text file to smooth the
data. The following velocity estimator gains provided
good performance

Ki = diag{5, 5}, Γi = diag{1, 1}. (30)

The estimated distance between features is shown in Fig-
ure 9. Note that the estimated values stabilize in under
1 second. The estimation error is shown in Figure 10.
To illustrate how the image velocity estimator is useful,
the image velocity estimator was replaced with a deriva-
tive operator. The distance estimation error was seen to
be much higher without the image velocity estimator. In
fact, the estimation error more than doubled when the
velocity estimator was replaced with the simple deriva-
tive operation. Figure 11 shows the estimated distance
between features, and Figure 12, shows the estimation
error for the case with the derivative operation.

Table 2: Experimental error in distance estimation

Object Actual
distance
(cm)

Estimated
distance
(cm)

Length I 10.0 9.49

Length II 23.7 23.4

Length III 40.0 39.6

Length IV 33.7 33.2

Length V 24.5 24.2

Length VI 24.5 24
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Figure 9: Experiment: Estimated distance between fea-
tures.
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Figure 10: Experiment: Distance estimation error.
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Figure 11: Experiment: Estimated distance between fea-
tures with derivative operator.
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Figure 12: Experiment: Distance estimation error with
derivative operator.
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8 Summary and Future Work

In this paper, we have presented an estimation strategy
for 3D Euclidean reconstruction of static features on an
object using a single moving camera whose velocities are
known. The proposed estimator has a simple mathemat-
ical structure and can be easily implemented. Numerical
simulations and preliminary experimental results using a
mobile robot in an indoor environment were presented.
These results demonstrate that the estimation strategy is
accurate and converges quickly, in under one second, even
with a poor resolution and low frame rate camera. The
proposed estimation strategy was also shown to be appli-
cable to a paracatadioptric system. Our future work will
consider more complex trajectories for the mobile robot
and utilization of a high definition video camera which is
expected to provide more accurate results. Further ex-
perimental validation using a video camera mounted on a
UAV is also being considered. The real-time performance
of this algorithm is also currently being evaluated.

APPENDIX

A Extension for a Paracatadiop-

tric System

A paracatadioptric system is a central catadioptric sys-
tem with a paraboloid mirror and an orthographic camera
[26, 27]. This type of system has a large field of view and
thus is suitable for structure from motion. In this sec-
tion we consider the Euclidean reconstruction of a static
object using the 2D images captured from a paracatadiop-
tric system mounted on a moving platform whose velocity
is measurable. The development presented is for a single
feature point.

The projection of the Euclidean coordinate m̄(t) =
[

x y z
]T

∈ R
3 onto a paraboloid mirror is denoted

by the coordinate ȳ(t) =
[

y1 y2 y3

]T
∈ R

3 which is
defined as follows [28]

ȳ , rm̄ (31)

where r(t) ∈ R is defined as follows

r =
2f

l
(32)

where f ∈ R denotes the constant known focal length
of the system and l(m̄) ∈ R is the following nonlinear
function

l = −z +
√

x2 + y2 + z2. (33)

Note that, since the projection from the mirror onto the
camera’s sensor is orthographic the signal ȳ(t) is directly
measurable.

After taking the time derivative of (31), the following
expression for the kinematics of ȳ(t) can be obtained in a
similar manner to [28]

˙̄y = Ω1 + g (34)

where we have used the following expression to describe
the motion of the Euclidean co-ordinate m̄(t) as seen from
the moving camera frame [24]

˙̄m = −υc − [ωc]× m̄. (35)

In (35), υc, ωc ∈ R
3 denote the translational and rota-

tional velocity of the camera frame, and [·]× was defined
in (8). In (34), Ω1(t) ∈ R

3 consists of measurable and
known signals and g(t) ∈ R

3 contains the unknown Eu-
clidean information which must be estimated. The signals
Ω1(t), g(t), are defined as follows

Ω1 = − [ωc]× ȳ −
1

2f
(−y2ωc1 + y1ωc2) ȳ (36)

g = −rυc +

(

υc3

l
−

y1ẋ + y2ẏ + y3ż

2f(l + x3)

)

ȳ. (37)

Similar to the development in Section 4, the velocity
estimator [22] can be used to develop an estimate of the
signal ȳ(t) as follows

˙̄̂y ,

∫ t

t0

[(K + I3) ˜̄y(τ) + Γsgn(˜̄y(τ))]dτ

+ (K + I3) ˜̄y(t) (38)

where K, Γ ∈ R
3×3 denote constant positive definite

diagonal gain matrices, and ˜̄y(t) , ȳ(t) − ˆ̄y(t) de-
notes the estimation error for the signal ȳ(t). The es-
timator in (38) asymptotically identifies the signal ˙̄y(t)

(i.e.,
∥

∥

∥

˙̄̃y(t)
∥

∥

∥
, ‖˜̄y(t)‖ → 0 as t → ∞).

Since Ω1(t) is measurable, an estimate ĝ(t) =
[

ĝ1 ĝ2 ĝ3

]T
∈ R

3 for the signal g(t) can be defined
as follows

ĝ = −Ω1 + ˙̄̂y (39)

where g̃(t) , g(t) − ĝ(t) denotes the estimation error for
the signal g(t). Thus, the signal g(t) is asymptotically

identified provided that ˙̄̂y(t) → ˙̄y. From (37), an expres-
sion for the unknown Euclidean information contained in
r(t) can be developed as follows [28]

r̂2 =

(y2ĝ1 − y1ĝ2)
2

+ (y3ĝ1 − y1ĝ3)
2

+ (y3ĝ2 − y2ĝ3)
2

(y2υc1
− y1υc2

)
2

+ (y3υc1
− y1υc3

)
2

+ (y3υc2
− y2υc3

)2

(40)

where r̂(t) ∈ R denotes an estimate for r(t), and υc(t) =
[

υc1
υc2

υc3

]T
. The expression in (40) is obtained

by considering the individual elements of (37) and factor-
ing out the second term. Thus the 3D Euclidean infor-
mation can be reconstructed from (31) provided that the
denominator of (40) is non-zero.
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